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ABSTRACT 

 

Meteorological forcing data are necessary to drive many of the spatial models used to 

simulate atmospheric, biological, and hydrological processes.  Unfortunately, many domains lack 

sufficient meteorological data and available point observations are not always suitable or reliable 

for landscape or regional applications.  NOAA’s Local Analysis and Prediction System, LAPS, 

is a meteorological assimilation tool that employs available observations (meteorological 

networks, radar, satellite, soundings, and aircraft) to generate a spatially distributed, three-

dimensional representation of atmospheric features and processes.  As with any diagnostic 

representation, it is important to ascertain how LAPS outputs deviate from a variety of 

independent observations.  A number of surface observations exist that are not used in the LAPS 

system, and they were employed to assess LAPS surface state variable and precipitation analysis 

performance during two consecutive years (1 September 2001-31 August 2003).  LAPS 

assimilations accurately depicted temperature and relative humidity values.  The ability of LAPS 

to represent wind speed was satisfactory overall, but accuracy declined with increasing elevation.  

Lastly, precipitation estimates performed by LAPS were irregular and reflected inherent 

difficulties in measuring and estimating precipitation. 
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1. Introduction 

The use of meteorological forcing data to drive land surface/hydrological models is an 

active area of investigation.  Advances in Land Data Assimilation Systems, LDAS, at global 

(GLDAS; Rodell et al. 2004) and continental scales (NLDAS; Mitchell et al. 2004) have 

illustrated the utility of merging atmospheric and surface process models.  Similar studies are 

needed at local and regional scales. 

Gridded local and regional meteorological fields are necessary to drive many of the 

spatial models used to simulate river discharge and floods (e.g., Jasper et al. 2002; Westrick et al. 

2002), ecosystem processes (e.g., Running and Coughlan 1988; Scuderi et al. 1993; Parton et al. 

1998), snow-distributions (e.g., Liston and Sturm 2002; Winstral et al. 2002; Liston and Elder 

2006a), and hydrologic-cycle processes (e.g., Ludwig and Mauser 2000; Whitaker et al. 2003). 

Unfortunately, many areas (e.g., high elevation mountains, intermountain shrublands, deserts, 

sparsely populated areas) lack meteorological observations.  Furthermore, available point 

observations are not always suitable for landscape or regional applications (Pielke et al. 2002), 

especially in forested and mountainous regions. 

A remedy for generating local and regional weather observations involves the 

assimilation of available meteorological data into spatial and temporal diagnoses.  One approach, 

used at local scales, is to distribute observed meteorological variables over the domain of 

interest, in most cases utilizing topographic variation as a controlling factor (e.g., Thornton et al. 

1997; Liston and Elder 2006b).  At coarser scales, mesoscale data assimilation and forecast 

systems that incorporate a wide variety of data are available and widely used (see Lazarus et al. 

2002 for an overview).  However, more information on the strengths and shortcomings of 

potential meteorological data is desirable before incorporating assimilations into models. 

The focus of this paper, the National Oceanic and Atmospheric Administration’s 
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(NOAA) Local Analysis and Prediction System (LAPS, http://laps.fsl.noaa.gov/), generates 

local- to regional-scale gridded atmospheric forcing fields for land surface/hydrologic models.  

LAPS is a mesoscale meteorological data assimilation tool that employs a suite of observations 

(meteorological networks, radar, satellite, soundings, and aircraft) to generate a realistic, 

spatially distributed, time-evolving, three-dimensional representation of atmospheric features and 

processes (Albers 1995; Albers et al. 1996; Birkenheuer 1999; McGinley et al. 1991).  Analyses 

produced by LAPS include wind speed, wind direction, surface temperature, relative humidity, 

surface pressure, precipitation, and cloud cover.  Because LAPS produces a spatially distributed 

representation of meteorological observations, it provides important opportunities for users who 

require local (10-km or finer horizontal grid increment) meteorological data to drive distributed 

land surface and ecosystem models over local to regional domains.   In addition, LAPS can be 

used to provide an up-to-date atmospheric state representation for nowcasting and assessment, 

and it can serve as a mechanism to initialize local-scale mesoscale weather forecast models. 

To determine its suitability for various assessment and modeling applications, it is 

important to ascertain how LAPS outputs deviate from independent observations.  Most readily 

available observations (e.g., National Weather Service, various state-level departments of 

transportation, FAA weather) are integrated into LAPS, therefore, they cannot be used to assess 

performance.  However, observations collected by networks not used in LAPS are convenient 

sources of validation data that can be used to apply a more rigorous test than data denial. 

Our study is motivated by two primary concerns.  First, how well are daily and seasonal 

trends represented in assimilations?  Second, what are the differences between the assimilations 

and the independent observations?  By addressing these concerns, we hoped to identify strengths 

and shortcomings associated with LAPS outputs.  Our objective is to employ independent 
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meteorological data to examine relationships among LAPS assimilations and observed data with 

respect to meteorological variables commonly used as terrestrial model drivers: temperature, 

relative humidity, wind speed, and precipitation.  Our goal is to examine how LAPS data relate 

to coincident observations from the perspective of a LAPS end-user. 

 

a. Study area 

 The 1,312,500 km2 (1250 km by 1050 km) LAPS domain encompasses the states of 

Colorado, Wyoming, and portions of South Dakota, Nebraska, Kansas, Oklahoma, New Mexico, 

Arizona, Utah, Idaho, and Montana of the United States (Fig. 1).  The weather, topography, and 

land cover of the domain are typical of the Great Plains (Sims and Risser 2000) and Rocky 

Mountain (Peet 2000) regions.  The weather is continental and dry with relatively high summer 

and low winter temperatures.  The landforms shift from the eastern edge of the flat and rolling 

plains and tablelands to the dissected western canyons and high peaks of the Rocky Mountain 

Cordillera.  As a reflection of the interaction between atmosphere and land surface, the land 

cover changes from agricultural cropland, pastures, and grasslands in the east to mountain forests 

and shrubland basins in the west. 

 

2. Methods 

Validation of LAPS assimilations required hourly LAPS data, independent 

meteorological observations, meteorological-station site characteristics, and statistical analyses.  

LAPS validations were performed for assimilations spanning the two-year period of 1 September 

2001-31 August 2003 over the domain of interest (Fig. 1). 
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a. LAPS assimilations 

LAPS, developed and operated by the NOAA's Earth System Research Laboratory 

(ESRL) in Boulder, Colorado, combines a wide array of observed meteorological datasets into a 

unified atmospheric analysis with a time interval of an hour or less.  An analysis contains both 

spatially and temporally continuous atmospheric state variables in addition to special 

atmospheric and land-based fields over Colorado, Wyoming, and portions of the surrounding 

states (Fig. 1).  The quasi-operational analyses data used in the study described herein, employs a 

10-km horizontal grid (125 x 105) with 21 isobaric vertical levels and hourly temporal resolution 

(Liston et al. 2006). 

 

1) DRIVING DATA 

LAPS employs a wide range of observational datasets to construct its diagnoses, 

including 1) surface observations from regional surface networks every 5 minutes to 3 hours, 2) 

hourly surface aviation observations, 3) Doppler radar volume scans every 6-10 minutes, 4) wind 

and temperature Radio Acoustic Sounding System (RASS) profiles from the NOAA 

Demonstration Profiler Network every 6-60 minutes, 5) satellite visible data every 15-30 

minutes, 6) multi-spectral image (e.g., GOES) and sounding radiance data every 60 minutes, 7) 

Global Positioning System (GPS) total precipitable water vapor determined from signal delay, 

and 8) automated aircraft observations. 

LAPS topography and land surface is based on 1 km grid increment USGS land use data 

(Loveland et al. 2000) that provides 24 land application and vegetation-type categories along 

with the basis for discerning water/land fraction in the domain. 
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2) ANALYSES 

Temperature, relative humidity (from dewpoint), and wind speed are calculated using 

LAPS’ surface fields analyses, which were initially described by McGinley et al. (1991).  Since 

then, the procedure has been revised and is described here with particular attention to 

temperature (T), dewpoint (Td), and wind (U and V).  The surface field creation process entails 

data ingestion, the development of background fields, and successive correction.  The analysis is 

designed to operate in situations of rough terrain, non-uniform station spacing, and it 

incorporates instrument errors and first-guess fields.  Dynamical and terrain-related structure 

from a downscaled first guess is retained by performing the analysis in increment space. 

LAPS starts with a 3-D first-guess or background field interpolated to the 10-km grid 

from a large-scale forecast model output.  For this work, the 40 km Rapid Update Cycle (RUC) 

forecasts, (Benjamin et al. 2004a; Benjamin et al. 2004b) were used, but LAPS can operate with 

other models (e.g., Eta/NAM, Black 1994; and AVN/GFS, Kanamitsu 1989).  Since the 

background model terrain is on a coarser grid than LAPS, downscaling is performed so that the 

processed fields have reasonably fine-scale terrain-related structure.  The downscaling process 

uses horizontal bilinear interpolation, and vertical interpolation is used to create the finer  

grid scales for fields such as temperature and dewpoint.  For example, temperature downscaling 

is accomplished by using a locally determined lapse rate and elevation differences to adjust the 

coarser, initial 3-D first-guess surface temperature field to the finer resolution LAPS topography.  

Downscaled wind fields are calculated by vertically interpolating the 3-D LAPS analyzed wind 

field (Albers 1995) to the surface topography. 

Prior to the analysis of each field, several quality control steps are performed.  First, 

observations outside of climatologically expected values are rejected.  Second, observations that 
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deviate from the background field by more than a threshold value are omitted.  A final test 

compares the increments of the remaining observations to a dynamically determined threshold, 

which is proportional to the standard deviation of the observation increments and a 

proportionality constant dependent on the field. 

 After the quality control is completed, the analysis is initiated and a telescoping 

successive correction is done to improve the fit between the observations and background fields.  

After each iteration, the outcome becomes the background field for the next iteration.  During 

each successive correction procedure, a modified Barnes scheme is employed to weigh and blend 

observation increments with the updated background field until appropriate fine scale structure is 

developed.  Observation increments are given weights according to instrument and 

representativeness errors.  The background at each grid point is given an “observation” 

increment of zero with an appropriate weight corresponding to background error.  This strategy 

allows the analysis to smoothly trend toward the background in data sparse regions.  The 

iterations continue until the fine-scale structure and fit to observations become commensurate 

with observation spacing and instrument error.  Further, the analysis is constrained to vary from 

the background by no more than the magnitude of the observation rejection threshold discussed 

above.  This helps prevent overshooting (ballooning) of gradients into data sparse areas.  A 

variational minimization is done as a final step to enforce dynamical consistency between the 

wind and pressure fields. 

During each step in the analysis process, elevation and land surface characteristics are 

also considered.  Since LAPS uses a 10 km horizontal grid increment, substantial differences in 

observed station elevation and the LAPS gridded terrain field can exist.  To correct for this 
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difference and its effects on temperature and dewpoint, T and Td observations are corrected 

using standard lapse rates during each surface analysis. 

The land surface data are used to determine a land/water mask for the analyses.  The land 

fraction term prevents situations where heating and frictional effects over land surfaces have 

undue effects over water with respect to T, Td, U, and V fields. 

LAPS precipitation analyses provide quantitative estimates of liquid precipitation derived 

from various types of radar data.  For the version used in this study, low-level mosaics of WSR-

88D reflectivity were used as supplied by NOWRAD.  Precipitation analyses used for this 

comparison were described by Albers et al. (1996). 

 

 3) COMPARISON PREPARATION 

Preparation for the comparison involved extracting LAPS data from the LAPS grid point 

nearest the independent meteorological stations.  Additional processing was not employed for the 

hourly comparisons, but for daily comparisons, LAPS data were aggregated to daily maximums, 

minimums, and averages. 

 

b. Independent meteorological observations 

Validation of the LAPS diagnoses required comparison with meteorological data not used 

in the LAPS analyses.  Such datasets are routinely collected by educational and agricultural 

observational networks and field experiment campaigns, and they are easily accessible.  

Independent data sources utilized for validation included a total of 107 stations from the Cold 

Land Processes Experiment (CLPX, Cline et al. 2002), Colorado Agricultural Meteorological 

Network (COAGMET, http://ccc.atmos.colostate.edu/~coagmet/), the GLOBE Program 
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(http://www.globe.gov/), and the High Plains Regional Climate Center’s Automatic Weather 

Data Network (AWDN, http://www.hprcc.unl.edu/awdn/). 

Validation sources possessed a range of observed variables, temporal resolutions and 

measurement heights (Table 1).  Automated stations (CLPX, COAGMET, and AWDN) 

monitored air temperature, relative humidity, wind speed, and precipitation.  GLOBE data 

included temperature and precipitation measurements.  Observations ranged in frequency from 

10 minutes (CLPX) to daily (GLOBE); the remaining sources performed hourly measurements.  

Since CLPX data were observed at a finer resolution than LAPS assimilations, they were 

averaged to hourly observations.  Comparisons using GLOBE data involved aggregating LAPS 

data to a daily time-step.  Most measurement heights were 1.5 and 3 m; CLPX data were 

collected at 10 m.  After the data were collected, MicroMet preprocessor (Liston and Elder 

2006b) quality control measures were employed to find values outside of acceptable limits, 

consecutive values changing too rapidly, or repeating consecutive values. 

 

c. Station site characteristics 

1) ELEVATION 

LAPS and station elevation differences were a concern during validation.  Because LAPS 

assimilations were performed at 10 km horizontal grid increments, observed differences in LAPS 

diagnoses and observations required consideration, especially in mountainous terrain.  Thus, 

station elevations were subtracted from LAPS elevation to yield elevation differences that were 

used to assess potential LAPS elevation representation error.  Further, the effect of elevation on 

our comparison results was considered.   
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2) DISTANCE FROM NEAREST LAPS-USED METEOROLOGICAL DATA 

Most of the independent meteorological observations employed in this validation are 

operated for agricultural purposes.  Thus, there is a bias in this dataset (Fig. 1) toward relatively 

low elevation, grassland or cropland sites, some of which were unavoidably located near data 

sources employed in LAPS (e.g., METARs, radar).  This is an important, but unavoidable 

limitation given the large number of data sources employed in LAPS.  However, relatively 

remote observations (e.g., CLPX and some COAGMET and AWDN) stations were also 

employed for validation.  To assess the potential proximity effect on our validation, the nearest 

distance between independent observations and LAPS-used stations was calculated using GIS.    

 

3) LAND COVER 

 Spatial data were also necessary to perform the LAPS validation with respect to variation 

in land cover and elevation within the domain (Fig. 1).  Land surface characteristics have been 

shown to influence local weather characteristics and diurnal fluctuations (Pielke et al. 2000; 

Pielke et al. 2003).  We also desired to identify and assess the potential influence of land cover 

on the errors associated with LAPS assimilations and observed data. 

 A 30 m grid interval National Land Cover Dataset (NLCD, Vogelmann et al. 2001) was 

obtained from the USGS Seamless Data Distribution System for the entire LAPS domain (Fig. 

1).  Because we wanted to accurately represent the predominant land-cover type associated with 

each station, the 30 m resolution NLCD was resampled to 1 km, station coordinates were 

intersected with the 1 km NLCD data in a GIS, and each independent observation site was 

attributed with a predominant land-cover class. 
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d. Statistical analyses 

 The LAPS validation process occurred in two principal steps.  In the first step, LAPS air 

temperature, relative humidity, wind speed, and precipitation data were contrasted with 

observations using three methods.  First, LAPS values were compared with observations using 

simple linear regressions.  Second, because diurnal and seasonal trends are inherent in LAPS and 

observed datasets, a more absolute metric, root-mean-square error (rmse), was employed to 

quantify differences between LAPS and observed variables.  Last, daily ranges (maximum-

minimum) of the four LAPS and observed variables were compared with observations using 

simple linear regressions as a more rigorous test of LAPS’ ability to represent daily extremes. 

The second step entailed the assessment of observed vs. modeled relationships identified 

in the first stage with respect to observation site characteristics (station elevation, independent-

station distance from nearest LAPS-assimilated data, and land cover).  With the exception of 

land cover, site characteristics were regressed against temperature, relative humidity, wind 

speed, and precipitation measures (i.e., r2 comparisons, rmse, and daily-range r2 values) using 

simple linear regressions.  To evaluate the role of land cover, one-way analysis of variance 

(ANOVA) was performed using the temperature, relative humidity, wind speed, and 

precipitation estimates of variance (r2) as the response and land-cover class as the factor (Minitab 

2000).  Tukey’s one-way multiple comparisons (family rate = 0.05) were employed to assess 

differences in r2 among the cover types. 

 

3. Results and Discussion 

a. Simple linear regressions 
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 Simple linear regressions of LAPS assimilations versus observations of temperature, 

relative humidity, wind speed, and precipitation illustrated the abilities of LAPS to represent the 

four examined meteorological properties (Fig. 2A).  The linear regressions performed on two 

years of temperature and relative humidity data from 107 and 99 stations, respectively, indicated 

that much of the variation in observed data is duplicated in LAPS assimilations.  The mean r2 

values associated with temperature and relative humidity analyses were 0.96 and 0.82, 

respectively.  The variation represented by most equations with respect to LAPS and observed 

wind speeds (99 stations) was intermediate overall; the mean regression r2 value was 0.50.  For 

precipitation, the average of 96 station r2 values was the poorest among the compared 

meteorological variables (0.32). 

 In addition to having the highest average r2 value, the range of temperature r2 values was 

also relatively small, ranging from 0.64 - 0.99 (Fig. 2A), compared with the other meteorological 

variables.  In most cases, the temperature comparison r2 values were similar among the examined 

stations.  Relative humidity r2 values were from 0.45 to 0.95.  In contrast, wind-speed (0.01-0.85) 

and precipitation (0.01-0.76) r2 values possessed larger ranges, indicating a substantial variation 

in agreement among the stations.   

 

b. The rmse values 

 While linear regressions indicated how well LAPS followed observed trends on an hourly 

basis, more information about the absolute difference is desired.  Root mean squared error (rmse) 

values indicated the mean unit difference between hourly LAPS assimilation values and their 

coincident hourly observations (Fig. 2B).  Overall, temperature and relative humidity rmse 

values were 1.9 ºC and 9%, respectively.  Wind speed average rmse values were 1.7 m s-1.  
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Precipitation rmse values had an average difference of 0.69 mm.  Considering the different 

measurement units, the narrowest minimum to maximum difference in rmse values was 

associated with wind speed.  In contrast, the highest rmse range was found with precipitation.  

     

c. Daily-range regressions 

 Comparisons of daily extremes highlighted how well LAPS represented the magnitude of 

daily changes (Fig. 2C).  Temperature and relative humidity range agreements between LAPS 

and observed data indicated a poorer fit than the hourly comparisons.  Average temperature and 

relative humidity r2 values were 0.63 and 0.5, respectively.  The average proportion of variability 

in LAPS versus observed wind speed (35%) and precipitation were similar (39%).  Given the 

number of sources from which LAPS draws data and the 10 km resolution at which LAPS 

functions, it is not surprising that that agreement between observed and LAPS diurnal extremes 

was poorer than the hourly comparisons. 

 

d.Vineland, Colorado, case study 

 While linear regressions and rmse values provided a general and rigorous test of how 

well the LAPS assimilations represented the examined meteorological conditions among a 

number of distinct locations, more investigation into the comparisons at specific locations is 

preferred.  However, presenting linear regressions performed on 107 datasets of hourly 

temperature, relative humidity, wind speed, and precipitation over a period of 2 years is not 

practical.  Instead, a station located in the high-plains grassland of southeastern Colorado 

(38.2713 N, 104.467 W) and operated by the Colorado Agricultural Meteorological network 

(COAGMET, 2003) was selected to more thoroughly assess LAPS assimilations against 
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observations with respect to diurnal and seasonal cycles.  The Vineland station exhibited median 

hourly regression r2 values for all four examined variables and it is located 7 km from the nearest 

METAR data (Pueblo Memorial Airport, KPUB) used in LAPS.  Comparing the observations 

with LAPS diagnoses on an hourly timescale is easily done by coincidently plotting the values 

and examining the individual linear regression plots for the stations. 

 

1) TEMPERATURE 

 Temperature values were nearly identical in the LAPS assimilations compared with the 

independent observations associated with the Vineland, Colorado, site (Fig. 3).  In the plots, few 

temporal lags exist and not many differences between the two plots are discernable during the 

three examined months.  Afternoon temperatures were highest while nighttime and morning 

temperatures were lower.  Fall, winter, and spring (Figs 3A-C) diurnal patterns and temperature 

extremes are represented in both records; few LAPS data points deviate substantially from the 

observed record, and differences are most frequently associated with daily minimum and 

maximum temperatures. 

The simple linear regression performed on the LAPS and observed records (Fig. 3D) 

indicated that agreement was high (r2 = 0.98) and the slope of the equation approximated a 1:1 

relationship.  Furthermore, the cloud of compared points shows a small level of variation around 

the 1:1 regression line and a y-intercept close to 0, indicating that there were no clear errors with 

respect to temperature and few differences between LAPS and observed data.  The rmse value 

was representative of all sites (1.8), as was the r2 value (0.66) of the temperature range regression 

(Fig. 2B,C). 
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 Why was air temperature so well represented in LAPS?  Air temperature is a continuous 

variable that varies relatively smoothly through time and space in most conditions, and these 

changes tend to be moderate and predictable based on characteristics of atmospheric dynamics, 

elevation (Pielke and Mehring 1977), and land surface characteristics (vegetation, soil moisture, 

etc.; Marshall et al. 2004a; Marshall et al. 2004b).  The LAPS assimilations and algorithms 

employed to capture the dynamics of air temperature appear to be successful within the 

validation domain (Figs. 1-2). 

 

2) RELATIVE HUMIDITY 

 Relative humidity values produced by LAPS closely matched concurrent observations 

(Fig. 4).  As was the case with the temperature comparisons, temporal lags between the datasets 

were not apparent.  September 2002, January 2003, and May 2003 (Figs. 4A-C) comparisons 

exhibited reasonable diurnal trends.  However, LAPS relative humidity values were usually 

lower than observed data during observed minimums and maximums (Figs. 4A-C). 

The simple linear regression for the Vineland station revealed the relationship between 

LAPS and observed data.  The proportion of variability in the LAPS data accounted for by the 

observations was 87%, slope was 0.90, the y-intercept was -4, and moderate scatter of data 

points existed along the regression line, especially at higher observed humidity values (Fig. 4D).  

Like the temperature comparison, the relative humidity validation indicated that most of the 

variance between LAPS and observed data was explained in the linear model (r2 = 0.87).  A 

slope < 1 and a y-intercept < 0 in the equation indicated that LAPS data tend to have a lower 

relative humidity than the observations.  Moreover, the scatter of points around the regression 

line indicated that LAPS and observed data agreement was more probable at lower relative 
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humidity values, and there is a higher chance of mismatch at higher (> 70%) relative humidity 

values. 

The rmse and linear regressions of relative humidity range were also typical of the other 

comparisons.  LAPS relative humidity differed from observed data by 9%.  The diurnal 

magnitude of LAPS relative humidity values explained the variability in observed range 53% of 

the time. 

Relative humidity, in contrast to temperature, is less spatially continuous and can change 

dramatically over distances < 30 km (Camargo and Hubbard 1999; Hubbard 1994).  Despite this 

relative humidity variability, the relationships between LAPS and observations were strong.  

Furthermore, it is likely that this high level of agreement is related to the successful 

representation of temperature.  However, the discrepancy between LAPS and observed higher 

relative humidity values should be examined further.   

 

3) WIND SPEED 

 LAPS and observed wind speed values were more divergent than temperature and 

relative humidity comparisons (Fig. 5).  Overall, the LAPS data were more extreme than 

observations during the examined months (Figs. 5A-C).  Lower observed wind speeds were 

coincident with higher LAPS wind speeds. 

 The simple linear regression performed on the Vineland LAPS and observation 

comparison revealed an intermediate variance agreement, a slope < 1, a y-intercept close to 1, 

and variable scatter along the regression line (Fig. 5D).  The r2 value for the wind-speed 

regression indicated that 52 percent of the variation in the LAPS assimilation existed in the 

observed data.  The slope value of 0.92 and a y-intercept of 1.1 revealed that LAPS 
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overestimated wind speeds at low observed wind speeds while more closely matching higher 

wind speeds.  Scatter around the regression line is relatively uniform up to 9 m s-1; it tapers at 

speeds above that due to the lower frequency of higher wind speeds in this location. 

 Like the other variables, the Vineland wind speed rmse value and diurnal variation 

regressions were typical median values (Fig. 2).  The mean difference between LAPS and 

observed wind speeds was 1.6 m s-1.  The daily-range of LAPS wind speeds explained the 

variation in observed ranges 38% of the time. 

 The erratic relationship between LAPS and the observed wind-speed data is indicative of 

the spatial variability associated with wind speed (Arya 2001; Hubbard 1994).  While winds are 

relatively consistent above the well-mixed daytime boundary layer, they interact with the surface 

and surface features (e.g., topography and vegetation) to produce spatially variable wind speeds, 

especially when observations were taken relatively close to the surface (i.e., 3m, Table 1).  The 

potential influence of surface features on the relationship between LAPS and observed wind 

speeds are explored below (see e. Station site characteristics). 

 

4) PRECIPITATION 

 The precipitation comparison showed the highest level of disagreement among the four 

compared meteorological variables (Fig. 6).  In most cases, the LAPS data showed evidence of 

precipitation where none was observed during the same period (Figs. 6A-C).  When precipitation 

actually occurred, it was usually apparent in concurrent LAPS data.   

 Winter precipitation events were problematic (Fig. 6B) and noticeably absent from most 

of the observed meteorological datasets.  The automated stations used in the validation lacked 

the appropriate equipment (nearly all had non-heated tipping buckets) for reliable hourly winter 
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precipitation measurements, especially in the relatively cold and windy environments found in 

the study domain (Fig. 1).  To address this limitation, winter precipitation observations were not 

considered in the statistical comparisons when they were recorded at temperatures < 3 ºC. 

 The simple linear regression equation for Vineland’s precipitation comparison revealed 

the explained variation, slope, y-intercept, and scatter along the regression line (Fig. 6D).  The r2 

value from the regression indicated that 26% of the variance between the two datasets was 

explained by the equation.  The slope was greater than 1 and the y-intercept was slightly greater 

than 0, indicating that LAPS assimilations generally overstated precipitation, especially at higher 

observed precipitation levels.  There is abundant scatter along the regression line at lower 

observed (< 5 mm hour-1) precipitation levels (Fig. 6D). 

 The disparity between LAPS and observed precipitation is likely a function of 

observational error, LAPS calculation of precipitation from radar data, and scaling differences.  

Precipitation measurements are some of the more difficult meteorological measurements to make 

accurately (Shih 1982; Ahrens 2003), especially when precipitation is accompanied by wind 

(Yang et al. 1998), which is a common occurrence in the study domain (Fig. 1).  LAPS also 

calculates precipitation with the aid of radar observations that can over/underestimate 

precipitation (Brandes et al. 1999; Klazura et al. 1999; Legates 2000).  LAPS precipitation 

discrepancies may be range dependent, where ground clutter at close range or beam overshooting 

at long range produces errors (Henry 2003).  Also, radar precipitation overestimates can occur 

relative to rain gauges for very light precipitation that evaporates before hitting the ground or 

fails to register in the rain gauges.  Lastly, it is important to remember that the LAPS system 

studied here operates on a scale of 10 horizontal kilometers while the compared observations are 

point measurements located within that 10 km.  Precipitation amounts within that 10 by 10 km 
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area may not be reflected by a point within that area, especially when precipitation is convective 

in origin (Pielke 2001), which is common in the study domain. 

 

e. Station site characteristics 

1) ELEVATION 

How did station elevation values influence the comparisons?  Faint or no discernable 

relationships existed for elevation and comparison values associated with temperature and 

precipitation (Table 2).  However, station elevation possessed a significant relationship with 

higher variance explained by regressions involving relative humidity (r2 values, rmse, and daily-

range r2) and wind-speed comparisons (r2 values and daily-range r2). 

With an increase in elevation, r2 values from the relative humidity simple linear 

regression comparisons decreased (Fig. 7A).  The explanation in variance is intermediate with 

33% of the variance in r2 values explained by elevation (Table 2).  Possible explanations for this 

trend include a paucity of higher-elevation meteorological observations used in LAPS, more 

complex terrain, background model limitations, and errors in LAPS dewpoint and temperature 

calculations.  Another potential explanation involves the disparity in LAPS elevation values and 

actual station elevations.  However, analyses (results not shown) indicated that the difference in 

LAPS and observed elevation did not explain the decrease in accuracy with elevation.       

As the elevation of the observation location increased, regression r2 values associated 

with LAPS and observed wind speed comparisons exhibited a marked decrease (Fig. 7B; Table 

2).  The 61% explanation in variance due to elevation indicates that topographic features, forest 

cover, lack of observations, or some combination of these factors contributes to the higher 

frequency of disparities present between LAPS and observed wind speeds.  Again, differences in 
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r2 values due to disparities between the 10 km horizontal grid increment LAPS DEM and the 

observation-station elevation were not significant with the magnitude of wind speed differences 

in LAPS and observed values.  

 

2) DISTANCE FROM NEAREST LAPS-USED METEOROLOGICAL DATA 

Did observed and station proximity influence the comparisons?  The distance from the 

nearest LAPS-used station was employed as a predictor in linear regressions to examine its 

relationship to the direct comparison r2, rmse, and daily-range r2 values (Table 2).  Regressions 

were only significant for relative humidity and wind speed comparisons (Table 2), but the 

explanation of the variance for distance relative to the comparison measures were uniformly poor 

(r2 from 0.00-0.09).  While the independent stations used for validation were located 1-69 km 

(mean = 25 km) away from LAPS-used data stations, distance is not correlated to the identified 

relationships between observed and diagnosed meteorological values of temperature, relative 

humidity, wind speed, and precipitation.    

 

3) LAND COVER 

 The 107 stations used for validation of LAPS assimilations were located in 13 different 1-

km-aggregated National Land Cover classes (with quantity in parentheses): water (1), residential 

(2), urban (4), bare (1), deciduous forest (1), evergreen forest (2), shrubland (6), urban grassland 

(1), grassland (37), pasture/hay (15), small grain (14), row cropland (22), and alpine (1).  

According to the unbalanced one-way ANOVAs, r2 values were significantly different among 

the land-cover classes for temperature, relative humidity, and wind-speed comparisons (Fig. 8, 
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Table 3).  The r2 values among precipitation comparisons and cover classes were not 

significantly different. 

How were the land cover types different with respect to accuracies among LAPS and 

observed data?  Mean r2 values of the temperature comparisons were all high with the exception 

of the residential cover class, which was identified as significantly lower (0.05 family error in a 

Tukey pairwise comparison) than the pasture/hay, grassland, row crop, small grain, and 

shrubland classes (Fig. 8A).  While the relative humidity r2 values were significantly different in 

the ANOVA (Table 3), Tukey pairwise comparisons using 0.05 and 0.10 family error rates failed 

to identify classes different from each other (Fig. 8B).  With regard to wind speeds (Fig. 8C), 

evergreen r2 values were significantly lower (0.05 family error) than grassland, small grains, row 

cropland, and urban classes.  In addition, shrubland wind speed r2 values were significantly 

lower than those associated with row crops. 

It is important to note the disparity among land-cover class memberships that were used 

to delineate these differences among land-cover types and LAPS-observation discrepancies.  

Stations associated with water, residential, urban, bare, deciduous forest, evergreen forest, urban 

grassland, and alpine classes possessed less than 3 members; results related to these classes 

should be treated with appropriate skepticism.  It is not a matter of being attributed a false 

significance with respect to the r2 differences; the Tukey test at a 0.05 family error rate is a 

conservative test (Neter et al. 1996).  Rather, the error lies with classes that have a low sample 

size where stations having a high leverage were used to calculate the mean.  For example, the r2 

values associated with the temperature comparisons of the residential class were 0.97 and 0.64 

(Fig. 8A).  The one station with the poorer 0.64 value made the residential class significantly 

different from the pasture/hay, grassland, row crop, small grain, and shrubland classes. 
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With the lack of replications in mind, the most concrete land cover and accuracy 

relationship is associated with shrubland r2 being lower than row crop r2 values for the wind-

speed comparisons.  Reasons for the disparity may be associated with weather differences among 

the land cover types or some other combination of characteristics (e.g., surface roughness). 

 

4. Conclusions 

 LAPS assimilations matched trends in independent temperature and relative humidity 

observations temporally and spatially.  In absolute terms, temperature differences between LAPS 

and observed data were generally < 2 ºC, while relative humidity discrepancies were 9%.  Since 

LAPS RH is derived from T and Td, the error magnitude appears to be consistent.  Although less 

accurate, general diurnal changes in temperature and relative humidity were duplicated by LAPS 

regardless of land-cover type and elevation associated with the 107 stations employed in this 

project.  Temperature and relative humidity characteristics were successfully characterized by 

LAPS for different landscapes (Fig. 7A-B).  For example, mountain and grasslands, each with 

their distinctive surface characteristics, were represented by LAPS similarly. 

 Wind speed and precipitation relationships between LAPS and observed datasets were 

more variable and less reliable.  Wind speeds were reasonably represented by LAPS 

assimilations and absolute accuracy was much higher for lower elevations.  The main reason for 

disparities in precipitation values remains unknown but likely involves some combination of 

observation errors, scaling issues, and radar measurement limitations.  

The LAPS system is a valuable and reliable choice for applications that require high 

temporal resolution and spatially distributed meteorological data.  LAPS is a realistic data 

assimilation system; it extends the capabilities of its users to areas where few (if any) 
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meteorological data sources exist or where those sources are often unreliable.  Additionally, 

LAPS improvements underway (e.g., smaller horizontal resolution) are likely to extend the 

capabilities of this system and may help remedy relatively large disparities among precipitation 

estimates and observations. 
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FIGURE CAPTIONS 

 
FIG. 1.  The LAPS domain, portrayed in this MODIS enhanced vegetation index (EVI) image, 

envelops Colorado, Wyoming, and portions of surrounding states.  Data used for 

validation include the Cold Land Processes Experiment (CLPX), Colorado Agricultural 

Meteorological Network (COAGMET), GLOBE, and the High Plains Regional Climate 

Center’s Automatic Weather Data Network (AWDN). 

 

FIG. 2.  LAPS assimilations and observed comparisons were made using direct linear 

regressions, summarized by r2 values (A), rmse (B), and linear regressions of diurnal 

ranges (C). The box plots display the median (solid line); and 10th,25th, 75th and 90th 

percentiles of the r2 and rmse values. 

 

FIG. 3.  Vineland, Colorado LAPS air temperature assimilations are shown compared with 

simultaneous observations during September 2002 (A), January 2003 (B), and May 2003 

(C).  A simple linear regression for all comparisons from 1 September 2001 through 31 

August 2003 are also shown (D). 

 

FIG. 4.  Vineland, Colorado LAPS relative humidity assimilations are shown compared with 

simultaneous observations during September 2002 (A), January 2003 (B), and May 2003 

(C).  A simple linear regression for all comparisons from 1 September 2001 through 31 

August 2003 are also shown (D). 
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FIG. 5.  Vineland, Colorado LAPS wind speed assimilations are shown compared with 

simultaneous observations during September 2002 (A), January 2003 (B), and May 2003 

(C).  A simple linear regression for all comparisons from 1 September 2001 through 31 

August 2003 are also shown (D). 

 

FIG. 6.  Vineland, Colorado LAPS precipitation assimilations are shown compared with 

simultaneous observations during September 2002 (A), January 2003 (B), and May 2003 

(C).  Because of tipping bucket limitations, winter precipitation observations were not 

included unless temperatures were > 3 ºC (B).  A simple linear regression for all 

comparisons from 1 September 2001 through 31 August 2003 are also shown (D). 

 

FIG. 7.  Relative humidity (A) and wind speed (B) comparison r2 values decrease with elevation 

(Table 2).  The decrease with elevation may be related to local terrain influence, LAPS 

calculations, lack of local observations, or some combination of these factors. 

 

FIG. 8.  The level of agreement (r2 value) varied significantly (Table 3) with National Land 

Cover Data classes for temperature (A), relative humidity (B), and wind speed (C).  No 

significant relationshsips existed between precipitation agreements and land cover (D).  

The box plots display the median (solid line); and 10th, 25th, 75th and 90th percentiles of 

the r2 values. 
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Source Temp. Rel. Hum. Wind Spd. Precip.
(oC) (%) (m s-1) (mm)

CLPX
Instrument Vaisala HMP45C Probe Vaisala HMP45C Probe R. M. Young 05103 Various

anemometer (not used)
Meas. Ht. (m) 10 10 10

COAGMET
Instrument Vaisala HMP45C Probe Vaisala HMP45C Probe R. M. Young 05103 TE525 tipping bucket

anemometer gauge (not heated)
Meas. Ht. (m) 1.5 1.5 3 > 1

GLOBE
Instrument Max. and Min. N/A N/A Plastic Rain Gauge

Thermometer (various) collector > 102 mm diam.
Meas. Ht. (m) 1.5 0.5-1.7

HPRCC, AWDN
Instrument Vaisala HMP35 Vaisala HMP35 MET-One 014 Tipping Bucket

and HMP45 and HMP45 anemometer (various)
Meas. Ht. (m) 1.5 1.5 3 0.5-1

 TABLE 1.  Description of the meteorological instruments and measurement heights used as independent observations.

 

 

 33



Analysis Factor Equation [Y = b0 + b1(X)] Std Dev b0 Std Dev b1 Std Dev Model (d.f.) r2
 P Value

Elevation
Air Temperature
r2 elev (m) = 4480 - 3294 temp r2 1059 1105 620 (106) 0.08 <0.01
rmse elev (m) = 557 + 390 temp rmse 159 75 577 (106) 0.20 <0.001
range elev (m) = 2282 - 1523 temp range r2 196 300 578 (106) 0.20 <0.001

Relative Humidity
r2 elev (m) = 4065 - 3316 rh r2 397 478 533 (98) 0.33 <0.001
rmse elev (m) = 2 + 143 rh rmse 152 16 476 (98) 0.47 <0.001
range elev (m) = 2486 - 2319 rh range r2 137 257 481 (98) 0.46 <0.001

Wind Speed
r2 elev (m) = 2585 - 2489 ws r2 108 200 405 (98) 0.62 <0.001
rmse elev (m) = - 210 + 919 ws rmse 343 201 592 (98) 0.18 <0.001
range elev (m) = 2327 - 2749 ws range r2 126 321 492.4 (98) 0.43 <0.001

Precipitation
r2 elev (m) = 1331 - 449 precip r2 83 219 430 (95) 0.04 <0.05
rmse elev (m) = 1260 - 82.2 precip rmse 57 41 431 (95) 0.04 <0.05
range elev (m) = 1348 - 426 precip range r2 98 217 422 (89) 0.04 <0.05

Distance from Nearest Used Station
Air Temperature
r2 dist (m) = 34394 - 9695 temp r2 31620 33001 18517 (106) 0.00 0.77
rmse dist (m) = 17154 + 4025 temp rmse 5050 2390 18279 (106) 0.03 0.10
range dist (m) = 28810 - 5896 temp range r2 6255 9578 18491 (106) 0.00 0.54

Relative Humidity
r2 dist (m) = 62396 - 45050 rh r2 13192 15870 17716 (98) 0.08 <0.01
rmse dist (m) = 8639 + 1793 rh rmse 5606 573 17571 (98) 0.09 <0.01
range dist (m) = 36898 - 23353 rh range r2 5081 9562 17895 (98) 0.06 <0.01

Wind Speed
r2 dist (m) = 34407 - 18126 ws r2 4837 8915 18056 (98) 0.04 <0.05
rmse dist (m) = - 2776 + 16714 ws rmse 10289 6034 17748 (98) 0.07 <0.01
range dist (m) = 34024 - 24161 ws range r2 4624 11767 18049 (98) 0.04 <0.05

Precipitation
r2 dist (m) = 22252 + 8946 precip r2 3507 9273 18211 (95) 0.01 0.34
rmse dist (m) = 26749 - 1834 precip rmse 2411 1734 18193 (95) 0.01 0.29
range dist (m) = 21285 + 9856 precip range r2 4168 9289 18026 (89) 0.01 0.29

TABLE 2.  Regressions were performed analyzing the assessed meteorological variables' r2, rmse, and range r2 relationships with 

elevation, and distance from the nearest LAPS-used meteorological data.
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Analysis d.f. Sum of Squares Mean Square F-Statistic p value

Air Temperature
cover class 12 0.07 0.01 2.33 0.01
error 94 0.24 0.00

Relative Humidity
cover class 11 0.30 0.03 2.56 0.01
error 87 0.94 0.01

Wind Speed
cover class 11 1.36 0.12 3.92 0.0001
error 87 2.74 0.03

Precipitation
cover class 9 0.40 0.04 1.11 0.36
error 86 3.47 0.04

TABLE 3.  One-way analysis of variance (ANOVA) 
results for effects of land cover on regression agreement (r2).
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FIG. 1.  The LAPS domain, portrayed in this MODIS enhanced vegetation index (EVI) image, envelops
Colorado, Wyoming, and portions of surrounding states.  Data used for validation include the Cold Land
Processes Experiment (CLPX), Colorado Agricultural Meteorological Network (COAGMET), GLOBE,
and the High Plains Regional Climate Center's Automatic Weather Data Network (AWDN).
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